

Proyecto de Modernización de la Refinería de Talara

Opinión experta sobre la diferencia del monto de inversión a nivel conceptual y FEED y las horas hombre utilizadas para el desarrollo del FEED del PMRT

Informe Final

Diciembre 5, 2012

Preparado para:

PETROPERU 📼

Arthur D. Little, Inc. First City Tower 1001 Fannin Street, Suite 705 Houston, Texas 77002 Tel : +1 281-404-9856 Fax : +1 713-655-0726 Web: www.adlittle-us.com

- 2 FEED's CAPEX vs CE's CAPEX Assessment
- 3 FEED Engineering Hours & Cost
- A Appendix

We made our own 2012 estimation of investment by unit to be able to compare with the overall price indicated by Técnicas Reunidas

Arthur D. Little Methodology for FEED's CAPEX Assessment

- We estimated costs in detail for each refinery unit to compare with the overall price indicated by Técnicas Reunidas (TR) of 3,046 million USD to assess the reasonability of this amount
- We estimated for each of the units (100% of the units/facilities/services) the quantity of equipment, piping, structural steel, electrical, piling, civil, site development, instrumentation and labor required for construction e installation and also the related engineering services.
- We have done our estimation based in actual physical and commercial data for similar units designed and constructed recently.
- We did not included units to be outsourced, like Hydrogen, Power Generation, Nitrogen & Water Desalter units, which are only some of the typically outsourced ones in similar projects.
- We also made our own expert estimation of buy outs and other commercial cost components
- Once we had the physical estimation we calculated its costs in the USGC and its localization in Peru to compare with TR's estimation (for further details see examples in Appendix)
- We also conducted a comparison starting from the TR FEED basis using the quantity data supplied by TR for each of the units (Equipment, Piping, Structural steel, Electrical, Instrumentation, Piling, Civil, Site development, Buildings, Insulation, Painting and Fireproofing, Precommissioning, Other costs, Services costs, Commercial items)

The Open Book Estimate by TR represents in ADL opinion the fair costs for the PetroPeru Talara refinery modernization project, which we estimated in 3.1 billion dollars

	Description	Capacity	Unit	OBE Peru (TR)	ADL Estimate (2012)*	ADL / OBE
	Flexicoker	22,600	bpsd	437,600	421,200	-3.7%
	Naphta hydrotreating	13,300	bpsd	84,900	85,200	0.4%
	Catalytic reformer	9,500	bpsd	76,300	81,200	6.4%
	FCC Gasoline Hydrotreating	13,300	bpsd	77,100	73,500	-4.7%
	Diesel Hydrotreating	41,000	bpsd	127,800	113,400	-11.3%
	Sulfuric Acid Plant	560	t/d	90,200	97,300	7.9%
	LPG treatment		bpsd	33,000	32,700	-0.9%
	Catalytic Cracking	25,000	bpsd	225,500	222,700	-1.2%
	Vacuum Distillation	52,740	bpsd	114,000	100,900	-11.5%
	Gas Recovery II	8,129	kg/hr	59,400	61,500	3.5%
OBE vs	Amine Regeneration	234	m3/hr	37,300	36,100	-3.2%
UDE VS	Sour Water Stripping	196	m3/hr	35,800	36,700	2.5%
ADL	Crude Distillation	95,000	bpsd	102,900	89,400	-13.1%
	ISBL			1,501,800	1,451,800	-3.3%
Estimate	Caustic Kero Jet Treatment			17,400	18,300	5.2%
	Exhausted Soda Plant			16,700	17,300	3.6%
(2012) –	Interconnecting			342,600	397,400	16.0%
	Sanitary Treatment			54,300	56,800	4.6%
CAPEX	Closed Cooling Water			76,100	82,800	8.8%
(1000	Crude Tankage			191,300	211,400	10.5%
('000	Flare System			47,700	37,100	-22.2%
USD)	Seawater In/Out-Let			3,900	4,000	2.6%
030)	Maritime			10,900	11,600	6.4%
	General			380,600	403,400	6.0%
	OSBL			1,141,500	1,240,100	8.6%
	Subtotal Direct Cost			2,643,300	2,691,900	1.8%
	Seawater In/Out Let incl. scope opport.			59,900	59,900	0.0%
	Revamp cost allowance			13,600	13,600	-0.4%
	Total Direct Cost			2,716,800	2,765,400	1.8%
	Buy-outs			(132,400)	(100,000)	-24.5%
	Taxes			51,400	53,300	3.5%
	Contingency			131,900	135,900	3.1%
	Contractors turn key profit & risk provisions			221,500	214,100	-3.3%
	Feed cost & OBE Fees			57,000	57,000	-0.1%
	Grand Total			3,046,200	3,125,700	2.6%

(*) USGC costs located in Peru with quantities and subcontract costs adjustments

Our estimation, which is 2.6% higher than the OBE, includes adjustments on several items such as quantities and subcontract costs

	OBE Peru (TR)	ADL Estimate (2012)*	ADL / OBE
Equipment	524,215,100	547,813,100	4.5%
Mechanical, Electrical & instrumentation	975,577,800	986,637,900	1.1%
Civil Works	520,195,000	544,543,500	4.7%
Miscellaneous	31,642,100	32,675,500	3.3%
Subtotal Direct Field Cost	2,051,630,000	2,111,670,000	2.9%
Other costs	150,923,300	144,544,100	-4.2%
Services	440,831,200	435,673,400	-1.2%
Subtotal direct cost	2,643,300,000	2,691,900,000	1.8%
Seawater In/Out-Let including scope opportunity	59,900,000	59,900,000	-
Revamp cost allowance	13,600,000	13,600,000	-
Buy-outs	(132,400,000)	(100,000,000)	-24.5%
Taxes	51,400,000	53,300,000	3.7%
Contingency	131,900,000	135,900,000	3.0%
Contractors turn key profit & risk provisions	221,500,000	214,100,000	-3.3%
Feed cost & OBE Fees	57,000,000	57,000,000	-
Escalation	Excluded	Excluded	-
Grand total	3,046,200,000	3,125,700,000	2.6%

FEED's CAPEX Expert Opinion

When analyzing by category, TR costs estimate seems reasonable except for piping and structural steel quantities that appear to be overestimated and for mechanical bids sub-estimated

		Estimate	
Piping & steel (quantity)		Economic impact: +180 MMUSD	
Equipment (price)	->	Conservative, but reasonable	
Piping & Steel (price)	-	Aggressive estimate	
Electrical material (price)	\rightarrow	Range of expectations	
Instrumentation (price)		Slightly high	
Mechanical bids		Economic impact: -260 MMUSD	TR Estimate: 3 billion USD
Civil bids		Reasonable	
Other costs	\rightarrow	Reasonable	
Construction management and field indirects		In line with the direct field man-hours and costs	
Home office services	-	Low for the EPC scope	

(*) Considering

(**) Comparison with most reasonable bid adjusted by a lower amount of piping and steel

Overestimated heutral Sub-estimated

Based on historical quantity data from projects for similar units, TR estimate seems reasonable except for piping and structural steel quantities that appear to be high

Quantification	 Based on historical data from projects for similar units, the above ground pipe length for various units appears to be high by 30% Also, the weight of the structural steel appears to be on the high side by 20% Some other quantities appear to be high, but not unreasonable The economic impact on reducing the piping and structural steel quantities would be around 180 MMUSD 	 Pipe length and structural steel appears to be high Other quantities are reasonable
Equipment costs	 The equipment cost including the buy-outs and design development allowances looks conservative, but reasonable Compressors and pumps costs maybe somewhat on the high side 	The equipment cost looks conservative, but reasonable
Material costs	 Piping cost in the estimate is very aggressive Structural steel cost is also aggressive Electrical material cost is in range of expectations Instrumentation cost is slightly high 	The total material cost is reasonable, but tight
Subcontract costs	man haur ara taa law	

Other costs and services are in line with the direct field man-hours and costs, however home office services would be considered low for the EPC scope if it was not that TR has spent already a large amount of man-hours in preparing the FEED

Other costs	 Includes: Special lifting Precommissioning Vendor representation Spare parts for commissioning and capital spare parts Catalyst, chemicals and lubricants Training Other costs, such as lab cost Transportation Insurances and costs for bonds 	In general terms these costs are reasonable
Services	 These costs include construction management, field indirect and home office services costs The cost for the home office services cost would be considered low for the EPC scope if it was not that TR has spent already a large amount of man-hours in preparing the FEED. It maybe assumed that the project is already around 20% complete before the EPC effort starts The construction management and field indirect are in line with the direct field man-hours and costs 	 The construction management and field indirect are reasonable Home office services cost would be considered low

1 FEED's CAPEX Expert Opinion

Commercial costs seem reasonable; however before agreement about the fixed price for TR to execute the project has been reached, we recommend that the escalation required during project execution is included in the fixed price

Piping and structural steel quantities for ISBL appear to be considerably high; OSBL piping length estimate is high while structural steel one sounds reasonable

	Description	Dee	Piping	FEED	Piping ADL 2012		Steel FEED	Steel ADL
	Description	Pcs	length	weight	length	weight	weight	weight
	Flexicoker	221	135,500	4,848	77,400	2,769	8,840	7,740
	Naphta hydrotreating	69	32,900	997	22,400	679	1,380	1,040
	Catalytic reformer	58	17,900	622	14,500	504	870	870
	FCC Gasoline Hydrotreating	88	26,300	762	22,000	637	1,540	1,320
	Diesel Hydrotreating	65	39,200	1,301	16,300	541	2,930	1,300
	Sulfuric Acid Plant	64	9,300	465	11,200	560	1,600	960
	LPG treatment	44	11,000	255	11,000	255	1,100	440
	Catalytic Cracking	150	68,100	1,973	37,500	1,086	3,380	3,000
	Vacuum Distillation	65	43,800	1,488	17,900	608	2,110	1,140
	Gas Recovery II	67	23,700	660	18,400	512	1,010	840
	Amine Regeneration	37	14,000	452	8,300	268	560	370
	Sour Water Stripping	36	8,800	295	8,800	295	1,080	540
Piping	Crude Distillation	70	47,900	1,511	21,000	662	2,100	1,400
Piping and steel	ISBL	1,034	478,400	15,629	286,700	9,376	28,500	20,960
			100%		60%		100%	74%
structure			M/pc	kg/m	M/pc	kg/m	kg/pc	kg/pc
	Parameter		463	32.7	277	32.7	27.6	20.3
	Caustic Kero Jet Treatment	20	700	15	700	15	100	100
	Exhausted Soda Plant	9	2,400	42	2,400	42	50	50
	Interconnecting		254,600	12,089	254,600	12,089	16,500	16,500
	Sanitary Treatment	57	23,600	512	20,000	434	290	290
	Closed Cooling Water	37	5,100	863	5,100	863		
	Crude Tankage	67	117,600	4,408	117,600	4,408	340	340
	Flare System	32	46,300	1,453	11,200	351	160	160
	Seawater In/Out-Let	7						
	Maritime	6	1,000	37	1,000	37		
	General	106	35,700	1,320	31,800	1,176	530	530
	OSBL	341	487,000	20,739	444,400	19,415		17,970
			100%		91%		100%	100%

Piping and structural steel for ISBL could be reduced considerably; OSBL piping length could be reduced in a small proportion while the steel should not be altered

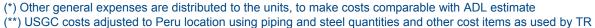
Piping and steel structure – Comments

- For the ISBL, the above ground piping is very long and could be reduced considerably
- There are many factors that could have impacted the quantity estimates of TR, such as: pressure and flow speed design criteria and separation standards between towers/equipment within a unit
- A critical review of the plot plan could have a positive impact on piping quantities
- The structural steel quantities for the ISBL is high compared with our estimate based on actual data from similar projects
- For the OSBL the piping length is also high compared with comparable actual units, but in a small proportion (9%), while the steel is reasonable and should not be altered

Most of the hourly rates are consistent, it appears that either the man-hours for the electrical and precommissioning are too high or the cost estimate is too low

	Man-hours and subcontract costs												
	Pile	Civil	Steel	Eqp	Pref	Pipe	Electr	Instr	BLD	Tks	N&R	Precom	Total
Qty staff	395	35,428	10,079	3,444	19,234	51,184	11,229	7,545	14,819	4,898	7,199	6,099	171,553
Hours ('000)	87	7,794	2,217	758	4,231	11,260	2,470	1,660	3,260	1,078	1,584	1,342	37,742
MUSD	82.0	183.2	172.1	21.5		346.9	28.7	40.2	112.9	32.1	59.4	23.4	
MUSD (material)	80.0	23.2	120.0						40.0	10.1	27.4	-	
MUSD (labour)	2.0	160.0	52.1	21.5	-	346.9	28.7	40.2	72.9	22.0	32.0	23.4	
USD/hr	23.00	20.50	23.50	28.40	-	22.40	11.60	24.20	22.40	20.40	20.20	17.40	

■ Most of the hourly rates are consistent, around 20 to 24 USD/hr.


It appears that either the man-hours for the electrical and precommissioning are too high or the cost is too low

If we keep TR's calculations on material quantities and subcontract cost, our estimate is 3.9% higher than the OBE

	Description	Capacity	Unit	OBE Peru (TR)	OBE Distributed*	ADL Estimate w/o adjust. (2012)**	ADL / OBE Dist.			
	Flexicoker	22,600	bpsd	437,600	490,657	516,000	5.2%			
	Naphta hydrotreating	13,300	bpsd	84,900	95,194	102,600	7.8%			
	Catalytic reformer	9,500	bpsd	76,300	85,551	89,800	5.0%			
	FCC Gasoline Hydrotreating	13,300	bpsd	77,100	86,448	92,700	7.2%			
	Diesel Hydrotreating	41,000	bpsd	127,800	143,295	149,700	4.5%			
	Sulfuric Acid Plant	560	t/d	90,200	101,136	102,000	0.9%			
	LPG treatment		bpsd	33,000	37,001	39,200	5.9%			
	Catalytic Cracking	25,000	bpsd	225,500	252,841	261,000	3.2%			
	Vacuum Distillation	52,740	bpsd	114,000	127,822	138,700	8.5%			
	Gas Recovery II	8,129	kg/hr	59,400	66,602	71,400	7.2%			
OBE vs	Amine Regeneration	234	m3/hr	37,300	41,822	45,000	7.6%			
	Sour Water Stripping	196	m3/hr	35,800	40,141	42,700	6.4%			
ADL	Crude Distillation	95,000	bpsd	102,900	115,376	127,500	10.5%			
	ISBL			1,501,800	1,683,886	1,778,300	5.6%			
Estimate	Caustic Kero Jet Treatment			17,400	19,510	19,200	-1.6%			
	Exhausted Soda Plant			16,700	18,725	17,900	-4.4%			
(2012) –	Interconnecting			342,600	384,139	436,500	13.6%			
CAPEX	Sanitary Treatment			54,300	60,884	63,500	4.3%			
	Closed Cooling Water			76,100	85,327	87,600	2.7%			
('000	Crude Tankage	_		191,300	214,494	230,000	7.2%			
	Flare System Seawater In/Out-Let			47,700	53,483	59,500	11.3%			
USD)	Maritime			3,900	4,373	4,100	-6.2%			
,	General			10,900	12,222	11,900	-2.6% 6.7%			
	OSBL			380,600 1,141,500	426,746 1,279,903	455,300 1,385,500	8.3%			
	Subtotal Direct Cost			2,643,300	2,963,789	3,163,800	6.7%			
	Seawater In/Out Let incl. scope opport.			59,900	67,163	3,103,000	0.7 /0			
	Revamp cost allowance			13,600	15,252		-			
	Total Direct Cost			2,716,800	3,046,204	3,163,800	3.9%			
	Buy-outs			(132,400)	0,040,204	0,100,000	0.070			
	Taxes			51,400						
	Contingency			131,900						
	Contractors turn key profit & risk provisions			221,500						
	Feed cost & OBE Fees			57,000						
	Grand Total			3,046,200						
PETROP	(*) Other general expenses are distributed to the units, to make costs comparable with ADL estimate									

If we keep TR's assumptions on material quantities and subcontract cost, our estimate is 3.9% higher than the OBE (cont.)

Adjusted CAPEX – OBE vs ADL Estimate (2012)						
	OBE Peru (TR)	ADL Estimate w/o adjust. (2012)*	ADL / OBE			
Equipment	524,215,100	558,685,700	6.6%			
Mechanical, Electrical & instrumentation	975,577,800	1,323,144,000	35.6%			
Civil Works	520,195,000	626,234,000	20.4%			
Miscellaneous	31,642,100	39,796,300	25.8%			
Subtotal Direct Field Cost	2,051,630,000	2,547,860,000	24.2%			
Other costs	150,923,300	146,061,000	-3.2%			
Services	440,831,200	469,845,000	6.6%			
Subtotal direct cost	2,643,300,000	3,163,800,000	19.7%			
Seawater In/Out-Let including scope opportunity	59,900,000	-	-			
Revamp cost allowance	13,600,000	-	-			
Buy-outs	(132,400,000)	-	-			
Taxes	51,400,000	-	-			
Contingency	131,900,000	-	-			
Contractors turn key profit & risk provisions	221,500,000	-	-			
Feed cost & OBE Fees	57,000,000	-	-			
Escalation	Excluded	-	-			
Grand total	3,046,200,000	3,163,800,000	3.9%			

(*) USGC costs adjusted to Peru location using piping and steel quantities and other cost items as used by TR

We consider the TR estimate for the project fair for the available FEED package and a good basis for starting the EPC phase of the project

Assessment of FEED CAPEX Going Forward

- After our analysis, we consider TR estimate for the project to be fair and, subject to contract final conditions, a good basis for starting the EPC phase.
- Petroperu has walked a long way since when started the PMRT project and even Petroperu has always have the option of changing the EPC, there are some risks associated with such decision
 - The contract with TR was signed for a "fast track" basis, allowing to convert to an EPC as soon as the FEED was completed and agreed a reasonable cost of the EPC for Petroperu
 - A new bidding process for EPC could bring higher costs
 - If other EPC company is selected, significant work done at the FEED level will not be used efficiently
 - Any contracting process for a new EPC company would take months and there is a cost involved on the delay on the project

The OBE by TR represents in ADL opinion the fair costs for the PetroPeru Talara refinery modernization project and a good starting point for the EPC phase

Main conclusions

- We have compared our cost estimate of Talara refinery modernization with the Open Book Estimate and ours is 2.6% higher than TR's
- The Open Book Estimate as presented by TR represents in ADLs opinion after our expert review the fair global cost for the PetroPeru Talara refinery modernization project based on the scope as outlined in the TR FEED package
- There are certain items that can be questioned in the estimate, such as the quantities, in particular for piping and structural steel which seems high and the mechanical construction cost which seems low. However in aggregated global terms the OBE cost estimate is reasonable and in many items very tight.
- If we keep TR's calculations on material quantities and contractors, our global estimate is 3.9% higher than the OBE (instead of 2.6%).
- It should also be realized that the TR and ADL estimate are based on a current cost level 4th quarter 2012 with escalation required during project execution excluded
- We consider the TR estimate for the project fair for the available FEED package and a good basis for starting the EPC phase of the project

- 1 FEED's CAPEX Expert Opinion
- 2 FEED's CAPEX vs CE's CAPEX Assessment
- 3 FEED Engineering Hours & Cost
- A Appendix

2 FEED's CAPEX vs CE's CAPEX Assessment

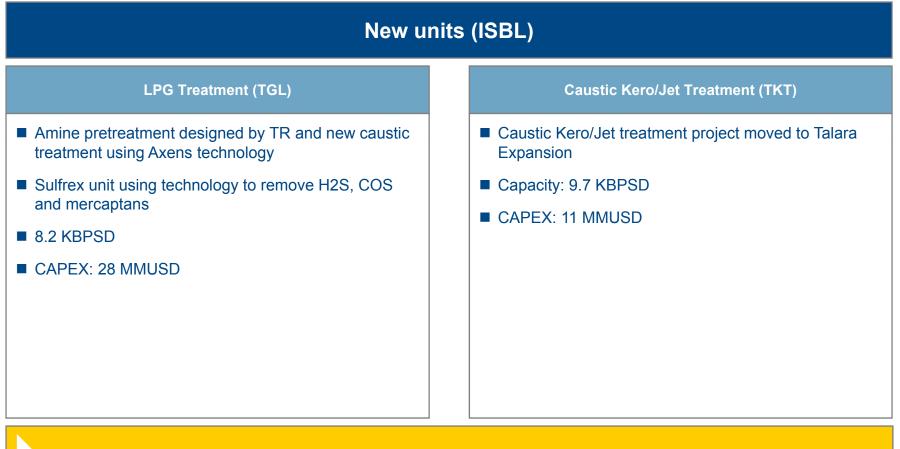
2012 FEED CAPEX estimate is consistent with Conceptual Engineering CAPEX estimate considering the escalation, scope, changes and additions made to the project, which rationality has been previously proved by Arthur D. Little

Note: ADL opinion about the evolution of the configuration of the FEED has been included in a previous study

(*) Escalation=

△ Nelson Farrar Index(2006-2012)*Materials share + Peruvian Construction Price Index(2006-2012)*Labour Share

2 FEED's CAPEX vs CE's CAPEX Assessment


FEED design did not change much the size of main process units, but built some key units instead of revamping and there are significant changes on those related to sulfur <u>content and hydrogen</u>, and utilities

	Unit	CE	FEED	Change
	Catalytic Cracking Unit – FCC	25,000	25,000	New instead of revamping
	FlexiCoker – FCK	21,000	22,600	Larger
	Atmospheric Distillation Unit – DP1	95,000	95,000	New instead of revamping
	Naphtha Hydrotreating Unit – HTN	13,300	13,300	No major change
	FCC Gasoline Hydrotreating Unit – HTF	9,500	9,500	No major change
	Sulfuric Acid Plant – WSA	362 TPD	560 TPD	Larger
	Diesel Hydro treating Unit – HTD	41,000	41,000	No major change
	Amine Plant – AM2	144 mt/hr.	234 mt/hr.	Larger
Critical	Catalytic Reformer – RCA	9,500	9,500	No major change
	Vacuum Distillation Unit – DV3	22,000 (Revamp) + 35,000 (New)	52,700	New instead of revamping
Design	Gas Recovery II – RG2 kg/hr	8,129	8,129	No major change
Aspects	LPG Treatment – TGL	-	8,200	New
– Units	Sour Water Treatment Disposal II – WS2	-	196 m3/h	New
	Caustic Kero/Jet Treatment – TKT	-	9,680	New
Capacity	Exhausted Soda Plant – OX/SCG	-	1 m ³ /hr.	New
(BPSD)	Cooling Water Closed System – CWC gpm	-	81,000	New
	Maritime facilities/ Sea Water Inlet & Outlet	Extension of tug pier	New pier	New
	Flare System/Torch – FB2	Revamp ground flare	3 new vertical flares	New
	Crude Product Storage – TKS	0/0/5	2/4/5	New
	Sanitary Treatment – SA2	-	20 m ³ /hr	New
	Buildings numberm2 total	2 - 3,100	30 - 65,084	Larger
	Interconnections – INT MMUSD	85	320	Larger
	Nitrogen Plant – NIS	1,500 m ³ /hr.	3,500 m ³ /hr.	Larger
	Hydrogen Unit – PHP	21 MMSCFD	30 MMSCFD	Larger
	Cogeneration Plant – GE	46 MW	100 MW	Larger

2 FEED's CAPEX vs CE's CAPEX Assessment

The requirement of new units that were not considered previously entails an additional investment of 39 MMUSD

New units requires an additional CAPEX of 39 MMUSD

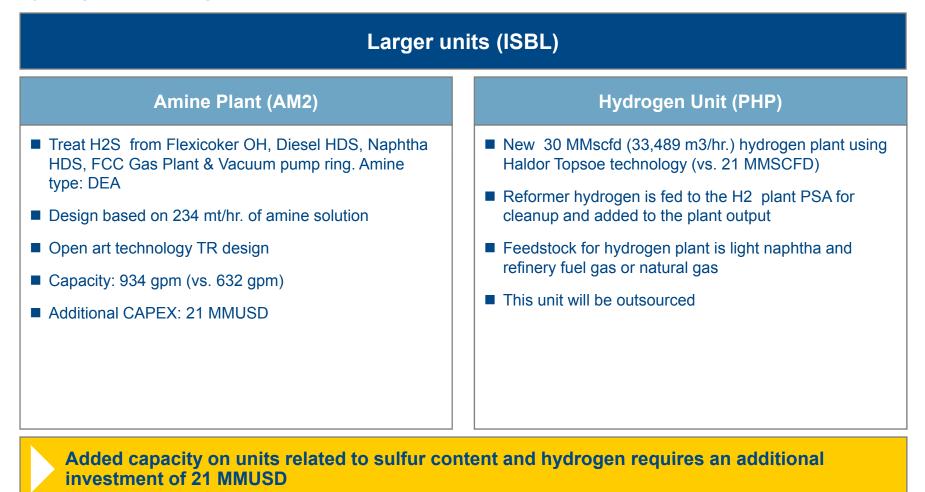
2 FEED's CAPEX vs CE's CAPEX Assessment

Safety & insurance requirements, future flexibility and age of the units drive the construction of the DP1, DV3 and FCC with an additional investment of 230 MMUSD

2 FEED's CAPEX vs CE's CAPEX Assessment

Due to crude feedstock mix and carbon content change, a larger flexicoker and larger related charges require an additional investment of 132 MMUSD

Larger Flexicoker (FCK)


- New Flexicoking unit using EMRE technology
- Carbon Content for Flexicoker feed change from 27.3 to 32.4 % wt, requiring more capacity: 22,600 BPSD (vs. 21,000 BPSD), 7.6% larger
- Two feed cases: 27.3% CCR (Blend case) and 32.4% CCR (Heavy case)
 - The Blend sets the equipment sizes for the liquid products recovery
 - Heavy sets the sizes for the coker gas recovery, reactor, heaters and gasifier
- Main related new equipment:
 - 12 towers
 - 5 reactors
 - 2 compressors
 - 87 pumps
 - 47 heat exchangers
 - 31 containers
 - 12 air coolers
 - 4 Heaters
- The capacity increase with larger related charges (site and overhead items) implies an additional investment: 434 MMUSD (vs. 302 MMUSD)

A larger Flexicoker with larger related charges involves an additional investment of 132 MMUSD

2 FEED's CAPEX vs CE's CAPEX Assessment

FEED design introduced significant changes on units related to sulfur content and hydrogen requiring an additional investment of 21 MMUSD

2 FEED's CAPEX vs CE's CAPEX Assessment

The requirement of new units that were not considered previously entails an additional investment of 153 MMUSD

New auxiliary units								
Sour Water Treatment Disposal II (WS2)	Exhausted Soda Plant (OX/SCG)	Caustic Soda Facilities (CAF)	Flare System/Torch (FB2)	Sanitary Treatment (SA2)				
 The sour water treater takes sour water containing ammonia, H2S, and CO2 and treats the stream with caustic soda. Capacity: 196 m3/h CAPEX: 32 MMUSD 	 Plant uses spent caustic to neutralize out of specification and waste acid Capacity: 0.9 m3/h CAPEX: 13 MMUSD 	 Unit mixes caustic soda 2 mixers for 15% and 40% dilution Electrical heater 6 Caustic Soda pumps Capacity: 4,102 m3/month 	 New vertical pipe systems 3 independent flares of same height Hydrocarbons 721.191 kg/hr. Low BTU Gas- FCK 222.440 kg/hr. Acid Gas 44.450 kg/hr. CAPEX: 49 MM USD 	 A new Sanitary Effluents treatment plant with capacity of 700 m3/hr. CAPEX: 59 MMUSD 				
New units requires an additional CAPEX of 153 MMUSD								

2 FEED's CAPEX vs CE's CAPEX Assessment

Capacity design has been used for Sulfuric Acid Plant given the criticality of it to the environmental compliance of the plant requiring 34 MMUSD in addition

Larger auxiliary units – Sulfuric Acid Plant (WSA)

- New 560 MTD plant (98% sulfuric acid) plant (vs. 362 TPD)
- Haldor Topsoe Wet Sulfuric Acid technology used.
- Two new 82,000 bbl. storage tanks for sulfuric acid
- Additional CAPEX: 34 MMUSD

Additional CAPEX: 34 MMUSD

FEED's CAPEX vs CE's CAPEX Assessment 2

New tanks for new products and replacement of tanks demolished for site development increases the investment in 126 MMUSD

Tankage – MB											
Product	CE	FEED	New Tanks								
Crude	2,700	1,707	CE: 0, TR: 2, PP: 4								
LPG	132	86.4	CE: 2, TR: 0 , PP: 3								
Butane	9.6	9.6	No new								
Naphtha	-	515.5	CE: 0, TR: 1, PP: 0								
Gasoline	626	358.6	CE: 0, TR: 0, PP: 2								
Turbo	255	262.5	CE: 0, TR: 0 , PP: 1								
Diesel	645	823.8	CE: 0, TR: 0, PP: 4								
Industrial products	320	305.8	CE: 0, TR: 1, PP: 0								
Intermediates	451	630.3	CE:0, TR: 4, PP: 0								
Solvents 1 & 3		22	No new								
Marine diesel	Not considered since	78.1	No new								
Bunker	production will not increase significantly	58.6	CE: 0, TR: 1, PP: 0								
Asphalt		59.8	CE: 0, TR: 0, PP: 3								
Sulfuric Acid	3 x 36	2 x 82	CE: 3, TR: 2, PP: 0								
Coke	514 mt/d	144 mt/d									
CAPEX	31 MMUSD	157 MMUSD	∆: 126 MMUSD								
ETROPERU 🐷											

2 FEED's CAPEX vs CE's CAPEX Assessment

The demolition and rebuilding of almost every building adds 119 MMUSD of investment

Additional buildings

- Construction of new process units and tanks require extra space and more relocations required:
 - 65,084 m2 (vs. 3,100 m2)
- Main new buildings
 - Administrative area (administrative, laboratory, access control): 10,832 m2
 - Plant area (control, medical, canteen, changing room): 3,100 m2
 - Maintenance and workshops area (heavy fleet workshop, parking, painting area, maintenance area): 7,940 m2
 - Logistics area (warehouse, hangar, etc.): 15,200 m2
 - Substations building (processes, tankage, effluent treatment, water, piers, etc.): 24.052 m2
 - Other (new pier control room, warehouse, office) : 3,960 m2
- It is also considered demolition of existing buildings, as FEED includes relocation and demolition of almost all existing buildings

The demolition and rebuilding of almost every building adds 119 MMUSD of investment

2 FEED's CAPEX vs CE's CAPEX Assessment

A number of minimum measures to be met were recommended in order to cover risks due to ground conditions requiring 60 MMUSD

Site preparation

- The geotechnical study determined the general terrain characteristics establishing the design basis and considerations required for infrastructure and foundations of buildings, structures and equipment:
 - The groundwater level recorded in the hilly area varies between 15.00 and 25.70 m depth, while in the lower part of the site varies between 1.10 and 2.60 m depth
 - Additionally, given the proximity to the sea, the water table is influenced by sea level and may fluctuate depending on the variations of tidal levels
 - Soils are contaminated with petroleum hydrocarbons at depths varying between 2.70 and 11.30 m above the level of the ground surface. Contents of total petroleum hydrocarbons up to 22.374 mg / kg, so that it can be concluded that the depth of contamination is greater
 - There is soil liquefaction potential where the perforations and auscultations in the lower part of the site were made
 - Considering the seismicity of the area, in the Building Technical Standard E030: Earthquake Resistant Design, the project area (Department of Piura) is considered in Zone 1 of seismicity, corresponding to high seismicity.
- Therefore, a number of minimum measures to be met were recommended in order to cover risks due to ground conditions: deep foundation in the lower part of the site for structures and equipment, using structural piles

Cover risks due to ground conditions requires 60 MMUSD

2 FEED's CAPEX vs CE's CAPEX Assessment

Modification of utilities to handle new/larger units increases investment in 72 MMUSD

		Utilitie	es		
Cogeneration	Steam Generation System	Cooling Water Closed System	Nitrogen Plant	Sea Water Inlet & Outlet	Demineralizing Plan / Desalination Plant
3 steam boilers driving 2 steam turbine generators (50MW each) and making high pressure (42.2 kg/cm2) and medium pressure (12.6 kg/cm2) steam Boilers use flexigas together with fuel gas and natural gas. Covers refinery power needs of 85 MW This unit will be outsourced	 Modification of distribution system to handle new/larger units New deareator with capacity of 461.6 mt/hr New Pumps: Very high pressure: 2x107 m3/hr (to cogen) High pressure: 2x224 m3/hr Medium pressure : 2x126 m3/hr Low pressure: 2x4.1 m3/hr Part of the cogeneration plant cost 	 Sea water intake off Punta Gallosa has 2 towers and 2 parallel pipelines delivering 196,958 gpm Seawater exchanged with CWC circulating 80,863 gpm. Turbidity meters at exchanges isolate process leaks for segregation. CAPEX: 50 MMUSD 	 3,500 m3/hr. cryogenic separation plant This unit will be outsourced 	 Intake and return are both in the Pacific Ocean Inlet covered with heavy duty slotted screen with openings <5mm. Sea water cooling flow of 196,958 gpm Additional CAPEX: 22 MMUSD 	 New plants (desalination and demineralization) to produce: Desalinated water demand of 16,000 m3/d to a maximum of 20,000 m3 /d using reverse osmosis. Demineralized water of 10.602 m3/d using deionization This unit will be outsourced

Modification of utilities to handle new/larger units increases investment in 72 MMUSD

2 FEED's CAPEX vs CE's CAPEX Assessment

Replace a two sided extension of the current tug dock with a new dock costs 2 MMUSD more than CE estimates

Facilities – Dock

- New dock (MU2) built on south side of Talara Bay.
- MU2 will handle up to 52,000DWT vessels and 34 ft. draft
- Existing dock (MU1) will be refurbished and will handle ships up to 35,000DWT
- Temporary dock (MU3) built for construction materials, can accommodate 700 ton crane

Replace a two sided extension of the current tug dock with a new dock costs 2 MMUSD more

2 FEED's CAPEX vs CE's CAPEX Assessment

Larger interpiping is required given standards and local regulations for spacing between units, demanding 213 MMUSD extra

Interpiping

- Standards and local regulations for spacing between units requires larger area, more relocation and thus larger interconnection/interpiping: 97,190 m2 (vs. 38,400 m2)
- Total number of lines: 992
 - Lines < 2" 117
 - 2" Lines: 333
 - 3"-6" Lines: 316
 - 8"-14" Lines: 133
 - 16"-20" Lines: 31
 - Lines >20" 62

Larger interpiping is required given standards and local regulations for spacing between units, demanding 213 MMUSD extra

2 FEED's CAPEX vs CE's CAPEX Assessment

An increase of investment of 68 MMUSD is considered due to higher power needs because of new units, larger units and new cooling water system

Electricity system

- 13 new substations as follows:
 - 1 principal substation (SEP),
 - 4 substations for process plants (SE 1/2/3/4), 3
 - substations for OSBL areas (SO 1/2/3/6),
 - 2 substations for general facilities (SO5/SO9),
 - 3 minor substations for buildings areas (SO4/SO7)
- Energy requirements 85 MW
- Electrical material including 1500 km of cable, power transformers, electric tracing, control stations, etc.

An increase of investment of 68 MMUSD is considered due to higher power needs



- 1 FEED's CAPEX Expert Opinion
- 2 FEED's CAPEX vs CE's CAPEX Assessment
- **3 FEED Engineering Hours & Cost**
- A Appendix

3 FEED's Engineering Hours & Cost

Radical changes of scope and a completely new layout for the refinery project increased the complexity of engineering required which implied more than double of hours, with a cost that is still in the % of CAPEX range for this kind of projects

Note: ADL opinion about the evolution of the configuration of the FEED has been included in a previous study

(*) Escalation=

△ Nelson Farrar Index(2006-2012)*Materials share + Peruvian Construction Price Index(2006-2012)*Labour Share

3 FEED's Engineering Hours & Cost

There are several units that were not considered initially, which required additional resources to design them

	Unit	Budgeted Hours	Initial capacity (CE)	Actual capacity (FEED)	Change
	Project management	21,400			
	Technical services	21,236			
	ISBL				
	Atmospheric Distillation – DP1	9,529	95,000	95,000	New instead of revamping
	Vaccum Distillation – DV3	29,000	22,000 (Revamp) + 35,000 (New)	52,700	New instead of revamping
	Flexicoker – FCK	71,274	21,000	22,600	Larger
Budget –	Naphtha Hydrotreating – HTN	15,093	13,300	13,300	No major change
	Reformer – RCA	14,203	9,500	9,500	No major change
Man	Catalytic Cracking Unit – FCC	28,793	25,000	25,000	New instead of revamping
hour	FCC Gasoline Hydrotreating – HTF	18,051	25,000	25,000	No major change
	Diesel Hydro treating Unit – HTD	23792	41,000	41,000	No major change
	Gas Recovery Unit – RG1 RG2 kg/hr	20,714	8,129	8,129	No major change
	Turbo treatment plant – TKT	9,207	-	9,680	Independent project (new)
	Amine Plant – AM2	13,942	144 mt/hr.	234 mt/hr.	Larger
	Sulfuric Acid Plant - WSA	15,519	362 TPD	560 TPD	Larger
	Hydrogen Unit – PHP	2,367	21 MMSCFD	30 MMSCFD	Larger
	LPG Treatment – TGL	1,186	-	8,200	New
	Caustic Soda Facilities– CAF	5,177	-	4,102 m3/month	New
	Sour water treatment – WS2	1,233	-	196 m3/h	New
	Caustic Naphta treatment – TNS	-	-	9,600	Independent project (new)
	Exhausted Soda Plant – OX/SCG	-	-	1 m ³ /hr.	Independent project (new)

FEED's Engineering Hours & Cost 3

There are several units that were not considered initially, which required additional resources to design them (cont.)

	Unit	Budgeted Hours	Initial capacity (CE)	Actual capacity (FEED)	Change
	OSBL				
	Cogeneration Plant – GE	10,688	46 MW	100 MW	Larger
	Storage	9,071	0/0/5	2/4/5	New instead of revamping
	Instruments air – PAR	2,761	21,000 m3/hr	7,910 m3/hr * 3	Modification (3 instead of 1)
	Flare system	2,765	Existing	3 new flares	New instead of revamping
	Oily Water Treatment	-	-	400 m3/hr	New
	Nitrogen Plant – NIS	1,972	1,500 m ³ /hr.	3,500 m ³ /hr.	Larger
Dudget	Steam Generation System – SGV	-	Deareator	Dearator (461.6 mt/hr)	Larger
Budget –	Cooling water system - CWC	2,959	-	80,863 gpm	New
Man	Sea water & sewage water outlet	2,467	50.000 gpm	196,958 gpm	Larger
hour	Sewage water treatment	2,959	-	20 m3/hr.	New instead of revamping
noui	Demineralizing Plant – DM2/ Desalination Plant – OR2	-	2,200 m3/d.	16,000-20,000 / 10.602 m ³ /d	New instead of revamping
	Fireproof system	2,958			
	Fuel gas system	1,480	Flexigas/refinery fuel	Refinery fuel/butanes	Modification
	Interconnections	-	38,400 m2	97,190 m2	Larger
	Other				
	Buildings – number/m2	3,945	2 / 3,100	30 / 65,084	Larger
	Port facilities	6,577	35,000 DWT * 2 (ext.)	52,000DWT (new)	New instead of extension
	Electricity	-	1 substation	13 substations	Larger
	Plot plan	-	199,219 m ²	307,924 m ²	Larger
	Total	382,647			∆: + 520,121 Hours Total : 902,768 Hours

PETROPERU Fuente: informe CPT Octubre 2012

3 FEED's Engineering Hours & Cost

Feed cost & OBE Fees account for 2.13 % of the total cost, which is in line with international parameters that range between 1.5 and 2.5%

Analysis of Feed Engineering Hours

- 2012 FEED projected cost & OBE Fees account for 2.13% of the total cost of Talara refinery modernization, which is in line with international parameters that range between 1.5 and 2.5% for projects
- Bids for FEED differed in structure and cost
 - TR 2009 bid of 24.5 MMUSD (aprox. 20 MMUSD + 20% fee mark up) was based in about 380 thousand engineering hours
 - Other bidder offered 116 MMUSD, (aprox. 44MMUSD + 163% fee mark up), with a basis of about 580 thousand engineering hours
- The bidding and contracting process for the FEED included a budget based on hours to be dedicated by unit for the FEED design, but cannot be tracked through the execution
 - FEED has been done and hours have been recorded and authorized in a different basis than the used in the bidding process
 - The Project Management Contractor reviewed and approved monthly dedication based on description of activities carried out by TR, related to the new scope of the engineering services

3 FEED's Engineering Hours & Cost

Besides refinery project change of scope and modifications, many factors contributed to the need of a higher amount of hours for the FEED

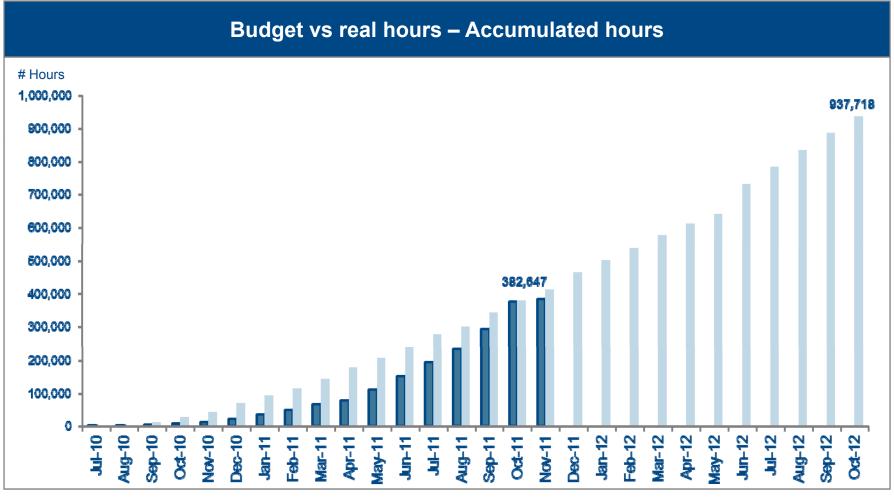
Analysis of Feed Engineering Hours

- They were some context conditions that impacted on the engineering needs for the FEED
 - At FEED level
 - Configuration changes
 - Inclusion in the scope of units not part of the original scope
 - Development of better information determined the need of new units Radical plot plant change, with many iterations
 - Better environmental and soil information impacted in redesigns and larger magnitudes
 - Changes on the criteria used for design standards during the project forced additional redesigns
 - Schedule delays for licensors design forced changes on FEED work plans, organization and global integration process
 - Value engineering carried out, including review and adjustments of basis, balances, plot plan, specifications and technical information
 - Some redesign needs for licensors plants after integration

> At OBE level

- Strategy for conversion: changed during the FEED
- OBE for new requirements and recalculation

3 FEED's engineering hours & cost


Schedule delays for licensors design forced delay and changes on FEED work plans, organization and global integration process

			Li	С	en	sor	S	and tec	hı	nologies basio	c des	sig	n s	sch	e	du	le									
ITEM	TECNOLOGÍA	PROCESO	E	FM	AM	2008 JJJ/	AS	O N D E F M A	м	2009 J J A S O N D E F M A M	2010 JJJA	SON	DE	FM	AM	2011 JJJ	AS	0	N D	EF	MA		2012 JJJ	A S	0	V D
1	Hidrotratamiento y Mejoramiento de Diesel HTD			f	Ť		(BP) →	↑ Verif. Doc., Redacc de Contrato HTAS	Nulo (2)		arrollo de Bl	f EDP														Π
2	Hidrodesulfurización y Reformación Catalítica de Nafta HTN & RCA	Q					y Buena Pro (Verif. Doc., Redacc de Contrato Axens	Nulo (2)	NDI O O E Desarrollo d	↑ e BEDP															
3	Hidrodesulfurización de Nafta Craqueada HTF				PCI	ertas	Eval.	Verif. Doc., Redacc de Contrato Axens	Nulo (2)	NDI Solution and the second se	♦ BEDP															
4	Coquificación de Residuo de Vacío FCK	petencia Int		Directorio	Convocatoria del PCI	Presentación de Ofertas Licenciantes	Desiert(1)	Precalificación y NDI	Buena Pro	Verif. Doc., Redacc de Contrato EMRE	Desarro	llo de E	BEDP	•												
5	Producción y Purificación de Hidrógeno PHP	Procso por Competencia Internacional		Acuerdo de Directorio	Con	Preser	(BP)	Verif. Doc., Redacc de Contrato HTAS	Nulo (2)		sarrollo de	BEDP	1													
6	Recuperación de Azufre vía Producción de Ácido Sulfúrico WSA	Pro					y Buena Pro	Verif. Doc., Redacc de Contrato HTAS	Nulo (2)		arrollo de Bl	f EDP										Revis BED		1		
7	Tratamiento de GLP TGL						Eval.	Verif. Doc., Redacc de Contrato Axens	Nulo (2)	NDI S S Desarrollo de	↑ BEDP									R	evisió	nBED	∱)P			
8	Ampliación y Modernización de FCC FCC	Negoc. Directa Int. NDI			Elab Apro Tdf	b. Té	isión c y E UOF	, INIER		Verif. Doc., Redacc de Contrato UOP	Firm Con Prep Doc		E	studios	y Des	arrollo	de Bl	EDP		↑						

3 FEED's engineering hours & cost

Some context conditions impacted on the engineering needs for the FEED and OBE, increasing required hours from 382 to 937 thousand

- 1 FEED's CAPEX Expert Opinion
- 2 FEED's CAPEX vs. CE's CAPEX Assessment
- 3 FEED Engineering Hours & Cost
- A Appendix

A Appendix

For each unit we estimated its cost in the USGC and adjusted to Peru location

43 mw

14.002 m2

6.601 m2

883 m3

2

5

6

40

pcs Quantity um weight (mt) man-hours

897.6

314.8

374.3

670.8

71,800

4,400

11.200

20,200

Labor

2,872,000

176,000

448,000

808,000

Material

5,575,500

5,636,800

2.012.000

14,918,000

11,097,800

2,271,000

7.659.000

4,870,700

1.394.300

77.526.700

3,670,000

9.000.000

5,400,000

7,200,000

25,634,000

3,960,000

1,687,500

2,250,000

360,000

225,000

8,482,500

200,000

(700

2,087,500

2,286,800

1,290,000

2,713,000

1.124.000

1.163.000

1.473.000

6,877,100

1,557,400

16,816,500

1,250,000

2,952,000

4,500,000

375,000

415,000

619.000

113.930.000

364,000

21,668,200

423,400

Total

8,447,500

5,812,800

2,460,000

15,726,000

11,681,800

2,415,000

7,931,000

22,668,200

5,158,700

1.482.300

84,206,700

19,399,000

703,000

2,565,000

14.625.000

8,100,000

10,575,000

55,967,000

4,240,000

13,437,500

3.832.500

1,797,500

2,600,000

25,907,500

1,450,000

2,087,500

3,538,800

1,290,000

2,713,000

1,124,000

1,163,000

6,877,100

1,557,400

16,816,500

1,079,000

6,395,000

2,952,000

22,500,000

3,375,000

36.301.000

222,700,000

(37,500)

619,000

169.620.000

1.300

423,400

Description

S&T exchangers

Towers & internals

Furnaces

Air coolers

2 1,048.1 14,600 Reactor & internals 2,445 m3 584,000 23 1,270 m3 257.6 3,600 144,000 Vessel 1,426 m3 Storage equipment 3 89.3 Pump incl drivers 54 45.8 6.800 272.000 6.523 kw Compressor incl drivers 3 17,208 kw 249.7 25,000 1,000,000 Package unit 4 238.9 7,200 288,000 -Miscellaneous egot 8 -45.5 2.200 88.000 EQUIPMENT 150 4.232.4 167.000 6.680.000 Piping (AG) Above Grade 37,500 m1 1,086.0 524,300 15,729,000 Piping (UG) Under Ground 1,200 m1 33.0 11,300 339,000 Pipe (FAB) Prefab 540 mt 85,500 2,565,000 Structural Steel 3.000.0 187,500 5.625.000 Electrical (connected load) 7,200 kw 108,000 2,700,000 Control Systems (control valves) 180 ea 135,000 3,375,000 MECHANICAL, E&I 4,119.0 1,051,600 30,333,000 Piling 750 ea 8.000 280,000 Concrete work / civil 7,500 m3 470,000 11,750,000 Site works & development m2 -Buildings m3 ---Insulation 22,500 m2 63,300 1,582,500 Painting 22,500 m2 57,500 1,437,500 Fireproofing 15,000 95,000 2,375,000 m2 CIVIL WORKS 17,425,000 693,800 Notes: Precommissioning 50,000 1,250,000 Heaw haul, heaw lift Miscellaneous allowance (2.400)2.000 MISCELLANEOUS 47.600 1,252,000 S/T DIRECT FIELD COST 1,960,000 55,690,000 Vendor representation Spare parts for commissioning Capital spare parts Catalyst in owner's cost Chemicals & lubricants Training costs Other costs Transportation Construction all risk & costs for bonds OTHER COSTS Constr. mngmnt TR 8,300 664,000 Constr. mngmnt Local 147,000 5,145,000 Field indirects HO Engineering TR 225.000 18,000,000 HO Engineering LCE 75,000 3,000,000

SERVICES

S/T DIRECT COST

rounding

Example -FCC

Appendix Α

For each unit we estimated its cost in the USGC and adjusted to Peru location Description Furnaces

Example -FCK

Description	pcs	Quantity	um	weight (mt)	man-hours	Labor	Material	Total
Furnaces	2	25	mw	264.9	21,200	848,000	3,230,200	4,078,200
S&T exchangers	45	19,980	m2	883.6	12,400	496,000	12,050,800	12,546,800
Air coolers	12	14,059	m2	714.9	21,400	856,000	5,334,900	6,190,900
Towers & internals	14	4,992	m3	1,531.6	46,000	1,840,000	13,431,700	15,271,700
Reactor & internals	5	8,852	m3	2,470.1	34,600	1,384,000	16,588,600	17,972,600
Vessel	28	2.170	m3	769.9	10,800	432,000	5.418.300	5,850,300
Storage equipment	10	10,128	m3	590.0	-	-	4,343,900	4,343,900
Pump incl drivers	81	8,977	kw	81.6	12,200	488,000	14,419,500	14,907,500
Compressor incl drivers	2	20,532	kw	181.0	18,200	728,000	22,071,400	22,799,400
Package unit	12			998.0	30,000	1,200,000	20,182,900	21,382,900
Miscellaneous eqpt	10	-		235.2	11,800	472,000	4,991,300	5,463,300
EQUIPMENT	221			8,720.8	218,600	8,744,000	122,063,500	130,807,500
Piping (AG) Above Grade		77,400	m1	2,769.0	1,401,800	42,054,000	13,284,000	55,338,000
Piping (UG) Under Ground		2,200	m1	46.0	15,800	474,000	216,000	690,000
Pipe (FAB) Prefab		1,830	mt		288,000	8,640,000	210,000	8,640,000
Structural Steel		1,000		7,740.0	485,000	14,550,000	23,220,000	37,770,000
Electrical (connected load)		17,600	kw	1,140.0	210,000	5,250,000	13,200,000	18,450,000
Control Systems (control va	alves)	288	ea		215,000	5,375,000	17,136,000	22,511,000
MECHANICAL, E&I	11003)	200	ca	10,555.0	2,615,600	76,343,000	67,056,000	143,399,000
Piling		1,990	ea	10,333.0	20,000	700,000	10,507,200	11,207,200
Concrete work / civil		14,400	m3		720,000	18,000,000	3,240,000	21,240,000
Site works & development		-	m2		720,000	- 10,000,000	-	21,240,000
Buildings		-	m3					
Insulation		33,200	m2		90,800	2,270,000	3,320,000	5,590,000
Painting		44,200	m2		110.000	2,270,000	707.200	3,457,200
Fireproofing		27,600	m2		172,500	4,312,500	414,000	4,726,500
CIVIL WORKS		27,000	IIIZ		1,113,300	28,032,500	18,188,400	46,220,900
Notes :		Precommis	eionin	2	103,800	2,595,000	415,000	3,010,000
Notes .		Heaw haul			103,000	2,333,000	3,006,300	3,006,300
		Miscellane			(1,300)	(4,500)	3,000,300	(3,700)
		MISCELLA			102,500	2,590,500	3,422,100	6,012,600
		WIIJOLLLP		3	102,300	2,330,300	3,422,100	0,012,000
		S/T DIREC	T FIEL	D COST	4,050,000	115,710,000	210,730,000	326,440,000
		Vendor rep			.,	,,	2,363,800	2,363,800
				mmissioning			1,135,000	1,135,000
		Capital spa					4,272,000	4,272,000
		Catalyst				in owner's cost	-,272,000	-,272,000
		Chemicals	1,770,000	1,770,000				
		Training co	1,831,000					
		Other costs	1,831,000 2,319,000	2,319,000				
		Transportat		12,606,800	12,606,800			
				sk & costs for	bonde		3,014,400	3,014,400
		OTHER CO		SK & CUSIS IUI	bolius		29,312,000	29,312,000
		Constr. mn		TR	17,000	1,360,000	850,000	2,210,000
							2,601,000	13,311,000
			amnt	Local	T 306 000 T			
		Constr. mn		Local	306,000	10,710,000		
		Constr. mn Field indire	cts		-	-	6,120,000	6,120,000
		Constr. mn Field indire HO Engine	cts ering	TR	381,000	30,480,000	6,120,000 7,620,000	6,120,000 38,100,000
		Constr. mn Field indire HO Engine HO Engine	cts ering ering		-	-	6,120,000	6,120,000 38,100,000 5,715,000
		Constr. mn Field indire HO Engine HO Engine SERVICES	cts ering ering	TR	381,000	30,480,000	6,120,000 7,620,000	6,120,000 38,100,000 5,715,000 65,456,000
		Constr. mn Field indire HO Engine HO Engine	cts ering ering	TR LCE	381,000	30,480,000	6,120,000 7,620,000	6,120,000 38,100,000 5,715,000

A Appendix

For each unit we estimated its cost in the USGC and adjusted to Peru location

Example -Reformer

	L 111	uic			and a	ujusie		CIU I
Description	pcs	Quantity	um	weight (mt)		Labor	Material	Tot
Furnaces	4	23	mw	1,012.0	81,000	3,240,000	6,915,500	10,155,50
S&T exchangers	8	949	m2	115.6	1,600	64,000	3,769,000	3,833,00
Air coolers	3	760	m2	69.1	2,000	80,000	343,200	423,20
Towers & internals	1	75	m3	60.6	1,800	72,000	899,500	971,50
Reactor & internals	3	77	m3	91.8	1,200	48,000	724,600	772,60
Vessel	12	104	m3	101.3	1,400	56,000	692,100	748,10
Storage equipment	-	-	m3	-	-	-	-	-
Pump incl drivers	14	422	kw	14.1	2,200	88,000	735,400	823,40
Compressor incl drivers	3	2,763	kw	70.0	7,000	280,000	9,745,400	10,025,40
Package unit	6			11.4	400	16,000	752,600	768,60
Miscellaneous eqpt	4	-		3.6	200	8,000	71,400	79,40
EQUIPMENT	58			1,549.5	98,800	3,952,000	24,648,700	28,600,70
Piping (AG) Above Grade		14,500	m1	504.0	249,800	7,494,000	2,105,000	9,599,00
Piping (UG) Under Ground		100	m1	2.0	-	-	13,000	13,00
Pipe (FAB) Prefab		250	mt	-	40,500	1,215,000		1,215,00
Structural Steel				870.0	55,000	1,650,000	2,610,000	4,260,00
Electrical (connected load)		2,600	kw		60,000	1,500,000	3,250,000	4,750,00
Control Systems (control va	lves)	52	ea		57,500	1,437,500	3,567,000	5,004,50
MECHANICAL, E&I				1,376.0	462,800	13,296,500	11,545,000	24,841,50
Piling		410	ea		4,000	140,000	2,164,800	2,304,80
Concrete work / civil		2,600	m3		162,500	4,062,500	585,000	4,647,50
Site works & development		-	m2		-	-	-	-
Buildings		-	m3	1	-	-	-	-
Insulation		7,300	m2		19,300	482,500	548,000	1,030,50
Painting		5,800	m2		15,000	375,000	92,800	467,80
Fireproofing		4,400	m2		27,500	687,500	66,000	753,50
CIVIL WORKS					228,300	5,747,500	3,456,600	9,204,10
Notes :		Precommi		0	21,000	525,000	84,000	609,00
		Heavy hau					-	-
		Miscellane			(900)	(, ,	(4,300)	(5,30
		MISCELL	ANEO	US	20,100	524,000	79,700	603,70
		S/T DIRE	CT FIE	LD COST	810,000	23,520,000	39,730,000	63,250,00
		Vendor re	presen	tation			452,500	452,50
		Spare part	s for c	ommissioni	ng		217,000	217,00
		Capital sp	are pa	rts			863,000	863,00
		Catalyst				in owner's cost	-	-
		Chemicals	s & lub	ricants			357,000	357,00
		Training co	osts				370,000	370,00
		Other cost	ts				468,000	468,00
		Transporta	ation				2,412,900	2,412,90
		Constructi	on all i	risk & costs	for bonds		588,000	588,00
		OTHER C	OSTS				5,728,400	5,728,40
1		Constr. m	ngmnt	TR	3,500	280,000	175,000	455,00
		Constr. m	ngmnt	Local	60,000	2,100,000	510,000	2,610,00
		Field indire			-	-	1,224,000	1,224,00
		HO Engine			66,000	5,280,000	1,320,000	6,600,00
1		HO Engine	eering	LCE	29,000	1,160,000	145,000	1,305,00
		SERVICE	S		-			12,194,00
		rounding						27,60
		S/T DIRE	CT CO	ST				81,200,00
		-						

